Abstract

Fructans are soluble polymers of fructose that are produced by approximately 15 % of the flowering plant species. Production of bacterial fructans in tobacco has been shown previously to lead to improved biomass production under polyethylene glycol-mediated drought stress. Here, we used the same SacB gene from Bacillus subtilis to produce bacterial fructans in sugar beet ( Beta vulgaris L.). The transgenic sugar beets accumulated fructans to low levels (max. 0.5 % of dry weight) in both roots and shoots. Two independent transgenic lines of fructan-producing sugar beets showed significantly better growth under drought stress than untransformed beets. Drought stressed fructan-producing plants attained higher total dry weights (+25–35 %) than wildtype sugar beet, due to higher biomass production of leaves (+30–33 %), storage roots (+16–33 %) and fibrous roots (+37–60 %). Under well-watered conditions, no significant differences were observed between the transgenic and wildtype beets. In conclusion, the introduction of fructan biosynthesis in transgenic plants is a promising approach to improve crop productivity under drought stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.