Abstract

To cope with the demand for good-quality potable water, household point-of-use (POU) facilities such as polypropylene cotton filters (PCFs) are widely used. However, the behaviors of new and used PCFs under discoloration are unclear. In this study, we found that new PCF did not effectively intercept particles under discoloration within the initial 5 d of inflow. In addition, the particles, especially the fine ones, accumulated in the long-used PCF exacerbated the risks of disinfection byproducts (DBPs) and microbes. The concentrations of trihalomethanes (THMs) and haloacetonitriles (HANs) in the effluent run through the PCF all increased over time; interestingly, all sharply increased after 5 d in accordance with the decrease in effluent iron particles. During this stage, maximum increases rate of 117.89% in THMs and 75.12% in HANs were observed. For haloacetic acids (HAAs), it served as the dominant contaminants, with concentrations approximately 10-fold greater than those of THMs and HANs. The increase showed that used PCFscould exacerbate the risks in DBPs exposure. Adenosine triphosphate (ATP) also showed a similar trend, with a maximum increase from 0.0033 to 0.0055 nmol/mL. Thus, PCFs can act only as pretreatment units and should be replaced after yellow water events. This study offers important guidance for PCF usage in drinking water purification, especially under discoloration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call