Abstract

Changes in the cell type composition of the digestive gland epithelium constitute a common and recognized biological response to stress in mussels. Usually, these changes are identified as alterations in the relative proportion of basophilic cells, determined in tissue sections stained with hematoxylin-eosin (H&E) and measured in terms of volume density of basophilic cells (VvBAS) after stereological quantification. However, the identification and discrimination of basophilic cells may be a difficult issue, even for a trained operator, especially when, in circumstances of environmental stress, basophilic cells lose their basophilia and the perinuclear area of digestive cells gains basophilia. Thus, the present study was aimed at exploring the best available practices (BAPs) to identify and discriminate basophilic cells on tissue sections of mussel digestive gland. In a first step, a thorough screening of potentially suitable staining methods was carried out; the final selection included several trichrome staining methods and some of their variants, as well as toluidine-based stains. Next, the sample processing (fixation/dehydration steps) was optimized. Toluidine-eosin (T&E) staining after fixation in 4% formaldehyde at 4 °C for 24 h was considered the BAP to identify and discriminate basophilic cells in the digestive gland of mussels. Using the mussel Mytilus galloprovincialis as a target organism, this approach was successfully applied to quantify VvBAS values after automated image analysis and compared with the conventional H&E staining in different field and laboratory tests. It is worth noting that VvBAS values were always higher after T&E staining than after H&E staining, apparently because discrimination of basophilic cells was enhanced. Thus, until more data are available, any comparison with VvBAS values obtained in previous studies using H&E staining must be done cautiously. Finally, the T&E staining was successfully used to discriminate basophilic cells in tissue sections of other marine molluscs of ecotoxicological interest, including Mytilus edulis, Mytilus trossulus, Crassostrea gigas and Littorina littorea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call