Abstract

To investigate the combination of carbon-based conductive materials and exogenous hydrogen (EH2) on methane recovery from fat, oil, and grease (FOG), granular activated carbon (GAC) and carbon cloth (CC) were chosen to collaborate with EH2, resulting in increased methane production by 59 % and 84 %, respectively. Further digestion of long chain fatty acids (LCFAs) confirms that enhanced direct interspecies electron transfer (DIET) was achieved in the reactors with GAC/CC + EH2 than those with GAC/CC only. Other evidences (such as increased microbial population and rapid degradation of volatile fatty acids) were found to support the role of GAC/CC + EH2 in promotion of DIET. Significant change of microbial community was observed using GAC/CC + EH2, which was mainly attributed to the enrichment of electrogenic species (such as Spirochaetaceae, Syntrophomonas palmitatica, and Methanosaeta), leading to some changes in metabolic pathways during acidogenesis and methanogenesis. Together, enhanced DIET was achieved by GAC/CC + EH2, thus improving the methane recovery from FOG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call