Abstract

Absorption spectra and spontaneous Raman spectra of optical fibres with a germanosilicate core loaded with molecular hydrogen at a pressure of 150–170 MPa are studied; the variation of these spectra during the outdiffusion of hydrogen from the fibres is also investigated. The purely rotational transitions of molecular hydrogen in Raman spectra of optical fibres are recorded for the first time. The changes in the spectral parameters of fibre Bragg gratings loaded with hydrogen are analysed. It is observed for the first time that under such high loading pressures, the decrease in the hydrogen concentration in the fibre core after completion of hydrogen loading occurs in two clearly manifested stages, the initial stage being characterised by a more rapid outlet of hydrogen as compared to the dynamics of hydrogen outdiffusing at pressures of 10–15 MPa. Barodiffusion of molecular hydrogen in optical fibres is considered as the main mechanism explaining this effect. An increase in the solubility of molecular hydrogen in germanosilicate fibres exposed to UV radiation is observed for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.