Abstract
Although GaN is a chemically inert, thermally stable material, it has demonstrated sensitivity to ion damage generated by dry etch processes such as reacting ion etching and inductively coupled plasma etching. Recombination-enhanced diffusion is an important mechanism which has been observed in other III–V semiconductor systems. In this study we examine the possibility of enhanced diffusion in GaN using quantum well (QW) probe structures. The deeper QWs (750 and 1000 Å deep) showed a steady decrease in relative photoluminescence (PL) intensity with time, providing evidence of the cooperative effects of channeling and defect diffusion in deep etch damage propagation in GaN. In contrast, shallow QWs (150 and 250 Å from the surface) showed a slight decrease followed by a gradual increase in relative PL intensity with time which was explained by defect annihilation. Exposure to above band gap illumination, used to simulate and enhance carrier generation during etch, appears to speed defect annihilation in high defect concentration regions resulting in an increase in QW luminescence, where as in lower defect concentration areas, above band gap illumination does not appear to significantly alter QW luminescence. We attribute this difference in behavior to a difference in diffusion constant. The diffusion constant in less damaged regions may be much lower than that of the highly damaged material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.