Abstract

Fusion proteins between the human 5-hydroxytryptamine (5-HT)(1A) receptor and either wild type or certain pertussis toxin-resistant forms of G(o1)alpha and G(i1)alpha display constitutive GTPase activity that can be inhibited by the inverse agonist spiperone. Addition of recombinant regulator of G protein signaling (RGS) 1 or RGS16 to membranes expressing these fusion proteins resulted in elevation of this constitutive GTPase activity without significantly altering the binding affinity of antagonist/inverse agonist ligands. For a 5-HT(1A) receptor-(Cys(351)Ile)G(o1)alpha fusion protein the increase in basal GTPase activity was greater than 4-fold. Enzyme kinetic analysis demonstrated that the effect of RGS1 was as a GTPase-activating protein for the fusion construct. In the presence of the RGS proteins, both agonists and inverse agonists produced much more robust regulation of high-affinity GTPase activity than in their absence. This allowed detection of the partial agonist nature of WAY100635, which has been described previously as a neutral antagonist at the 5-HT(1A) receptor. Of a range of ligands studied, only haloperidol functioned as a neutral ligand in the presence of RGS1. These studies show that addition of a recombinant RGS protein provides a simple and novel means to elevate the fraction of basal membrane GTPase activity contributed by the constitutive activity of a receptor. By so doing, it also greatly enhances the ability to detect and analyze the effects of inverse agonists and to discriminate between neutral ligands and those with low levels of positive intrinsic efficacy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call