Abstract

Abstract Flow-through capacitive deionization (FTCDI) is a traditional improved flow-by CDI cellular structure, used to remove ions from aqueous solutions. In this study, a new FTCDI was designed consisting of mesh electrodes (ME) containing ion-exchange membranes (IEM) and aerogel carbon granules with a specific surface area of 489 m2/g. All analyses and experiments performed showed that the new design can remove nitrate, phosphate, sodium, calcium, and chloride. Under optimal conditions, the new FTCDI system can remove 82.5, 49, 85, and 90% of sodium chloride, calcium chloride, nitrate, and phosphate with a maximum input concentration of 450 mg/L, 450 mg/L, 70 mg/L, and 3 mg/L, respectively. The efficiency of this system was also evaluated for real samples. Findings of the study showed that if the initial amount of turbidity is 12 NTU, total soluble solids (TDS) 1,700 mg/L, total hardness 540 mg/L, phosphate 0.09 mg/L, nitrate 28.8 mg/L, and electrical conductivity (EC) 3,480 μs/cm, the system can remove 25, 23.5, 33.3, 66.6, 54.4, and 39.1%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.