Abstract
Electronic display housing plastics contain a high amount of halogenated compounds such as brominated flame retardants (BFRs) and polyvinyl chloride (PVC). Compared with moderate critical conditions of conventional eco-friendly sub/supercritical carbon dioxide (Sc−CO2), a novel and sustainable procedure by using improved Sc−CO2 was developed for disposal of this type of plastic. The main merit of the process was that complex halogen-containing plastics were safely disposed and halogen-free products were recycled without using catalysts or additives. It was discovered that additive BFRs were initially extracted by Sc−CO2 technique and then it decomposed accompanied with PVC rapidly to form HBr and HCl, which could be separated by traditional bromine stripping techniques from seawater. Based on response surface methodology (RSM), the maximum debromination and dechlorination efficiencies were achieved at 99.51% and 99.12% respectively. After the treatment, halogen-free products such as solid carbon materials and organic chemical feedstocks were obtained. Mechanism study elucidated that free radicals reaction involving chain initiation, growth and termination induced the polymer decomposition to form these products. This study provides an applicable and green approach for disposal and recovery of halogen-containing plastics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.