Abstract
A purge and trap method was used to study the release of brominated organic compounds from polymeric brominated flame retardants (BFRs), a relatively unknown class of flame retardant materials. Among the volatile brominated organics released, pentabromotoluene (PBTo), pentabromoethylbenzene (PBEB), and hexabromobenzene (HBB) were of particular interest because of their high potential to persist in the environment The impact of a thermal stress on the release of these compounds was assessed by applying different constant temperatures for one hour to a polymeric BFR sample. Release rates ranged between 22 +/- 2.1 ng g(-1) h(-1) for PBEB to 2480 +/- 500 ng g(-1) h(-1) for PBTo at room temperature. These rates of release reached 65 +/- 11 ng g(-1) h(-1) for PBEB and 42400 +/- 4700 ng g(-1) h(-1) for PBTo at 100 degrees C. This suggests that the compounding of thermoplastic polyesters done at high temperatures, up to 290 degrees C, could lead to the release of significant amounts of volatile brominated compounds in the environment when crude polymeric BFRs are used as flame retardants. To assess if this unsuspected source of volatile brominated compounds to the environment was relevant to support air concentrations in the Great Lakes area, air samples collected at Egbert (ON, Canada) were analyzed and PBTo, PBEB, and HBB were detected at low levels in some air samples (<0.01 to 0.09 pg/m3). As a second step, a Level III fugacity model was run using release rates of PBTo, PBEB, and HBB determined in this study. Results of the model indicated that prevailing PBEB and HBB air concentrations were not supported by their release from polymeric BFRs but by the use of these compounds as additive BFRs. However, these model predictions suffered from a lack of information on the actual use of polymeric BFRs. Hence, further work is needed to assess the release of potentially persistent brominated aromatic compounds from polymeric BFRs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.