Abstract

The Fe75B12.5Si12.5 and Fe75B12.5C12.5 amorphous alloy ribbons were prepared by the melt spinning method. The decolorization performances of these ribbons were investigated in details. It is found that the Fe75B12.5C12.5 amorphous ribbons and Fe75B12.5Si12.5 annealed ribbons only adsorbed the azo dye molecules, with no chemical degradation process. However, the Fe75B12.5Si12.5 amorphous ribbons can reduce -N = N- to -NH2 because of their high reactivity and the local galvanic effect that occurred during the reaction to accelerate electron transfer. The reaction rate constant kobs is 0.0872min-1, 0.0474min-1, and 0.0064min-1 for Fe75B12.5Si12.5 amorphous ribbons, Fe75B12.5C12.5 amorphous ribbons, and Fe75B12.5Si12.5 annealed ribbons in the same condition, respectively. Fe75B12.5Si12.5 amorphous ribbons can effectively degrade Acid Orange II (AO II) azo dyes and achieve decolorization by breaking azo bonds in the dye in a short time, indicating the prominent capacity of Fe75B12.5Si12.5 ribbons on the degradation of AO II. Furthermore, the influence of chemical factors such as ribbons thickness, reaction temperature, initial pH, and AO II concentration of the solution on the reaction rate constant kobs of Fe75B12.5Si12.5 amorphous ribbons had also been studied. The kobs can reach 0.177min-1 under optimal conditions. In addition, all the degradation processes in this work were fitted well with the pseudo-first-order kinetic model. The results are guidance for the practical applications, and they have important implications in developing Fe-based amorphous alloys for functional application materials in the field of wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call