Abstract
The leaching potential of three insecticides (spirodiclofen, spiromesifen, and spirotetramat) was assessed using disturbed soil columns. Small quantities of spirodiclofen and spiromesifen were detected in leachate fraction, while spirotetramat residues were not found in the leachates. In addition, the transformation products (enol derivatives) are relatively more mobile than the parent compounds and may leach into groundwater. Moreover, the use of disinfection soil techniques (solarization and biosolarization) to enhance their degradation rates in soil was investigated. The results show that both practices achieved a reduction in the number of juvenile nematodes, enhancing in a parallel way degradation rates of the insecticides and their enol derivatives as compared with the non-disinfected soil. This behavior can be mainly attributed to the increase in soil temperature and changes in microbial activity. All insecticides showed similar behavior under solarization and biosolarization conditions. As a consequence, both agronomic techniques could be considered as suitable strategies for detoxification of soils polluted with the studied pesticides.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.