Abstract

The traditional social force model (SFM) in crowd simulation experiences difficulty coping with the complexity of the crowd, limited by singular physical formulas and parameters. Recent attempts to combine deep learning with these models focus more on simulating specific states of crowds. This paper introduces an advanced deep social force model, influenced by crowd states. It utilizes deep neural networks to accurately fit crowd trajectory features, enhancing behavior simulation capabilities. Geometrical constraints within the model provide control over varied crowd behaviors, adjustable to simulate different crowd types. Before training, we use the SFM to refine behaviors in real trajectories with excessively small distances, aiming to enhance the general applicability of the model. Comparative experiments affirm the effectiveness of the model, showing comparable performance to both classic physical models and modern learning-based hybrid models in pedestrian simulations, with reduced collisions. In addition, the model has a certain ability to simulate crowds with high density and diverse behaviors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.