Abstract

This paper proposes an enhanced cross-entropy (ECE) method to solve dynamic economic dispatch (DED) problem with valve-point effects. The cross-entropy (CE) method, originated from an adaptive variance minimization algorithm for estimating probabilities of rare events, is a generic approach to combinatorial and multi-extremal optimization. Exploration capability of CE algorithm is enhanced in this paper by using chaotic sequence and the resultant ECE is applied to DED with valve-point effects. The performance of the proposed ECE method is rigorously tested for optimality, convergence, robustness and computational efficiency on a 10-unit test system. Additional test cases with different load patterns and increased number of generators are also solved by ECE. Numerical results show that the proposed ECE approach finds high-quality solutions reliably with faster convergence. It outperforms CE and all the previous approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.