Abstract
Noble-gas spins feature hours-long coherence times, owing to their great isolation from the environment, and find practical usage in various applications. However, this isolation leads to extremely slow preparation times, relying on weak spin transfer from an electron-spin ensemble. Here we propose a controllable mechanism to enhance this transfer rate. We analyze the spin dynamics of helium-3 atoms with hot, optically excited potassium atoms and reveal the formation of quasibound states in resonant binary collisions. We find a resonant enhancement of the spin-exchange cross section by up to 6 orders of magnitude and 2 orders of magnitude enhancement for the thermally averaged, polarization rate coefficient. We further examine the effect for various other noble gases and find that the enhancement is universal. We outline feasible conditions under which the enhancement may be experimentally observed and practically utilized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.