Abstract

Implant-associate infection (IAI) is a major cause of failure of bone implant materials, and one of the significant challenges in clinical managements. A synergistic coating strategy combining montmorillonite (MMT) sustained release, adsorption of bacteria and gentamicin (GS) bactericidal is proposed herein to tackle infection issues. Surface morphology, microstructure and chemical composition of the samples were investigated using SEM, XRD, FT-IR and XPS. Electrochemical experiments and immersion experiments reveal that corrosion resistance of Mg samples with GS/MMT coatings was higher than that of bare Mg alloy substrate in DMEM solution. In vitro studies demonstrated that the GS/MMT coating had a significant inhibitory effect on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The viability of MC3T3-E1 cells was 92.7% after a co-culturing for 72 h. After a subcutaneous transplantation of 90 days, the survival rate was 100% for GS/MMT-coated Mg alloy specimens with no infection at the implantation sites and no toxic damage to liver, kidney and local muscles pathological sections. This study provides a novel method for the preparation of sustained-release antimicrobial coatings on biodegradable Mg alloys as promising candidates for orthopedic implant materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.