Abstract

In this article we prove highly improved and flexible Strichartz-type estimates allowing us to generalize the asymptotics we obtained for a stratified and rotating incompressible Navier-Stokes system: for large (and less regular) initial data, we obtain global well-posedness, asymptotics (as the Rossby number $\epsilon$ goes to zero) and convergence rates as a power of the small parameter $\epsilon$. Our approach is lead by the special structure of the limit system: the 3D quasi-geostrophic system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.