Abstract

The present paper proposes the use of fractional derivatives in the definition of sliding function, giving a new mode control applied to induction motor drives in electric vehicle (EV) applications. The proposed Fractional-Order Sliding Mode Direct Torque Control-Space Vector Modulation (FOSM-DTC-SVM) strategy aims to address the limitations of conventional control techniques and mitigate torque and flux ripples in induction motor systems. The paper first introduces the motivation for using fractional-order control methods to handle the nonlinear and fractional characteristics inherent in induction motor systems. The core describes the proposed FOSM-DTC-SVM control strategy, which leverages a fractional sliding function and the associated Lyapunov stability analysis. The efficiency of the proposed strategy is validated via three scenarios. (i) The first scenario, where the acceleration of the desired speed is defined by pulses, leading to Dirac impulses in its second derivative, demonstrates the advantage of the proposed control approach in tracking the desired speed while minimizing flux ripples and generating pulses in the rotor pulsation. (ii) The second scenario demonstrates the effectiveness of filtering the desired speed to eliminate Dirac impulses, resulting in smoother rotor pulsation variations and a slightly slower speed response while maintaining similar flux ripples and stator current characteristics. (iii) The third scenario consists of eliminating the fractional derivatives of the pulses existing in the expression of the control, leading to the elimination of Dirac impulses. These results demonstrate the potential of the FOSM-DTC-SVM to revolutionize the performance and efficiency of EVs. By incorporating fractional control in the control scheme for PV-powered EVs, the paper showcases a promising avenue for sustainable transportation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.