Abstract

New experimental data are reported for condensation of ethylene glycol at near atmospheric pressure and low velocity on six three-dimensional pin-fin tubes. Enhancements of the vapour-side, heat-transfer coefficients were found between 3 to 5.5 when compared to a plain tube at the same vapour-side temperature difference. Heat-transfer enhancement was found to be strongly dependent on the active surface area i.e. on the proportion of the tube and pin surface not covered by condensate retained by surface tension. For all the tubes, vapour-side, heat-transfer enhancements were found to be approximately 3 times the corresponding active-area enhancements. The best performing pin-fin tube gave a heat-transfer enhancement of up to 5.5; 17% higher than those obtained from ‘optimised’ two-dimensional fin-tubes reported in the literature and about 24% higher than the ‘equivalent’ two-dimensional integral-fin tube (i.e. with same fin root diameter, longitudinal fin spacing and thickness and fin height).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call