Abstract

Experimental data are reported for condensation of steam at atmospheric pressure and low velocity on five three-dimensional pin-fin tubes. The main geometric parameters varied were the circumferential pin spacing and thickness, since these have been shown to have a strong effect on condensate retention, and the present study shows some evidence for an optimum circumferential fin spacing. Enhancements of the vapor-side heat-transfer coefficient of up to 4 were found, compared to a plain tube at the same vapor-side temperature difference. The measured enhancements are equal to, but do not exceed, those obtained from “optimized” two-dimensional integral-fin tubes reported in the literature—an observation that is also generally true for condensation of refrigerants. The evidence suggests, however, that three-dimensional fin profiles can produce worthwhile enhancement over those obtained from simple, two-dimensional, integral-fin tubes, but that more work is needed to understand the phenomena involved so that more efficient geometries can be developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.