Abstract

For improving the performance of the photon color conversion from the energy of an InGaN/GaN quantum-well (QW) structure into the longer-wavelength emission of a colloidal quantum dot (QD), we insert the photoresist solution of the QD into a surface nano-hole, whose bottom face is about 10 nm higher than the top QW. The sample top surface is then cleaned for depositing Ag nanoparticles (NPs) to induce the surface plasmon (SP) coupling with the QW structure such that the QDs inside the nano-holes are located in the region of strong field distribution (hot spot). In this situation, the SP coupling can enhance the Förster resonance energy transfer (FRET) from QW into QD and the QD emission efficiency for producing a stronger color conversion process. The nanoscale-cavity effect of the nano-hole structure can further strengthen the SP-coupling enhanced FRET and QD emission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.