Abstract

By forming nanodisk (ND) structures on a blue-emitting InGaN/GaN quantum-well (QW) template, the QWs become close to the red-emitting quantum dots (QDs) and Ag nanoparticles (NPs) attached onto the sidewalls of the NDs such that Förster resonance energy transfer (FRET) and surface plasmon (SP) coupling can occur to enhance the efficiency of blue-to-red color conversion. With a larger ND height, more QWs are exposed to open air on the sidewall for more QD/Ag NP attachment through QD self-assembly and Ag NP drop casting such that the FRET and SP coupling effects, and hence the color conversion efficiency can be enhanced. A stronger FRET process leads to a longer QD photoluminescence (PL) decay time and a shorter QW PL decay time. It is shown that SP coupling can enhance the FRET efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.