Abstract

The electroreduction of carbon dioxide (CO2) to multi-carbon (C2+) compounds offers a viable approach for the up-conversion of greenhouse gases into valuable fuels and feedstocks. Nevertheless, current industrial applications face limitations due to unsatisfactory conversion efficiency and high overpotential. Herein, a facile and scalable plasma fluorination method is reported. Concurrently, self-evolution during CO2 electroreduction is employed to control the active sites of Cu catalysts. The copper catalyst modified with fluorine exhibits an impressive C2+ Faradaic efficiency (FE) of 81.8% at a low potential of -0.56V (vs a reversible hydrogen electrode) in an alkaline flow cell. The presence of modified fluorine leads to the exposure and stabilization of high-activity Cu+ species, enhancing the adsorption of *CO intermediates and the generation of *CHO, facilitating the subsequent dimerization. This results in a notably improved conversion efficiency of 13.1% and a significant reduction in the overpotential (≈100mV) for the C2+ products. Furthermore, a superior C2+ FE of 81.6% at 250mAcm-2, coupled with an energy efficiency of 31.0%, can be achieved in a two-electrode membrane electrode assembly electrolyzer utilizing the fluorine-modified copper catalyst. The strategy provides novel insights into the controllable electronic modification and surface reconstruction of electrocatalysts with practical potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call