Abstract

Hierarchical porous ZSM-5 (HP-ZSM-5) was constructed using organosilanes as the growth inhibitors for CO2 capture. The properties of adsorbents were characterized by X-ray diffraction, N2 adsorption/desorption, scanning electron microscopy, temperature-programmed desorption of carbon dioxide, and 27Al magic angle spinning nuclear magnetic resonance. It was found that HP-ZSM-5 samples synthesized by organosilanes had a significant effect on the microstructure and morphology. CO2 adsorption capacity of HP-ZSM-5 was up to 58.26 cm3 g–1 at 0 °C and 1 bar, significantly higher than that of the ZSM-5 sample. The effective improvement of CO2 adsorption performance mainly originated from the micro-/mesoporous composite structure and complex surface morphology, which can provide low-resistant pathways for CO2 through the porous network. Besides, in situ Fourier transform infrared spectroscopy was carried out to study the adsorption process on adsorbents, and the results indicated that a faster physical adsorption ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.