Abstract

Enhancing low-temperature activity is a focus for carbon monoxide (CO) elimination by catalytic oxidation. In this work, the hierarchical flower-like silver (Ag) modified cobalt oxides (Co3O4) nanosheets were prepared by solvothermal method and applied into catalytic CO oxidation. The doped Ag species in the form of AgCoO2 induced the prolongated surface Co–O bond and weaker bond intensity. Consequently, the oxygen activation/migration ability and redox capacity of Ag0.02Co were enhanced with more oxygen vacancies. The chemisorbed CO was preferentially converted to CO2 but not carbonates. The inhibited carbonates accumulation could avoid the coverage of active sites. According to Density functional theory (DFT) calculations, the electron transfer from AgCoO2 to Co3O4 promote electron donation ability of Co3O4 layer, benefiting for oxygen activation. Moreover, the longer Co–C and C–O bond length suggest the weakened chemisorption strength and higher active of CO molecule. The Ag modified Co3O4 exhibited more satisfactory activity at lower temperature. Typically, it realized 100% CO conversion at 90 °C, and displayed 6.3-fold higher reaction rate than pristine Co3O4 at 40 °C. Moreover, the Ag0.02Co exhibited outstanding long-term stability and water resistance. In summary, the optimized oxygen activation, CO chemisorption and interfacial electron transfer synergistically boosted the CO oxidation activity on Ag modified Co3O4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call