Abstract

Highly soluble germanium oxide,an amorphous macroreticular form of germanium oxide, was used as a precursor for the deposition of GeS2on reduced graphene oxide (rGO) through a low-temperature, wet-chemistry process. Thermal treatment of the solid provided an ultrathin rGO – supported amorphous GeS2coating. The GeS2@rGO composite was tested as a lithium ion battery (LIB) anode. Leveraging the versatility of wet chemistry processing, we employed strategies initially developed for mitigating polysulfide shuttle effects in lithium-sulfur batteries to enhance anode performance. The anode exhibited exceptional stability, surpassing 1000 cycles, with charge capacities exceeding 1220 and 870 mAh.g−1 at rates of 2 and 5 A.g−1, respectively. Performance improvements were achieved by minimizing GeS2 grain size using the non-ionic surfactant Triton X-100 during synthesis and preventing polysulfide shuttle effects through a negatively charged thick glass fiber separator, fluoroethylene carbonate additive (FEC) in EC:DEC (ethylene carbonate: diethyl carbonate) solvent, and a polyacrylic acid (PAA) binder. These cumulative modifications more than tripled the charge capacity of the germanium sulfide LIB anode. Feasibility was further demonstrated through full cell studies using a LiCoO2 counter electrode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.