Abstract

Copper based catalyst with Si–Ti binary-oxide support is synthesized via a facile ammonia evaporation method for selective hydrogenation of dimethyloxalate (DMO) to ethylene glycol (EG). 100% conversion of DMO and 90% selectivity to EG could be obtained over the Cu/SiO2–TiO2 catalyst at high liquid hourly space velocity (LHSV). Catalytic stability is greatly enhanced when the Si–Ti binary oxide is used as support because of the intimate interaction between copper species and the support. The improved catalytic performance compared to the unitary oxide-supported catalysts SiO2 and TiO2 could be attributed to the highly dispersed copper species stabilized by the binary support. Also, the electron transfer from TiO2 to Cu-species is found to play an important role in improving the surface charge density of the metallic copper, which is helpful to improve the catalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.