Abstract

Carrier-exciton interactions in two-dimensional transition metal dichalcogenides (TMDs) is one of the crucial elements for limiting the performance of their optoelectronic devices. Here, we have experimentally studied the carrier-exciton interactions in a monolayer MoS2-based two-terminal device. Such two-terminal device without a gate electrode is generally considered as invalid to modulate the carrier concentration in active materials, while the photoluminescence peak exhibits a red shift and decay with increasing applied voltages. Time-resolved photoluminescence spectroscopy and photoluminescence multipeak fittings verify that such changes of photoluminescence peaks result from enhanced carrier-exciton interactions with increasing electron concentration induce the charged exciton increasing. To characterize the level of the carrier-exciton interactions, a quantitative relationship between the Raman shift of out-of-plane mode and changes in electron concentration has been established using the mass action model. This work provides an appropriate supplement for understanding the carrier-exciton interactions in TMD-based two-terminal optoelectronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.