Abstract

Broad-band radio frequency (RF) detection is of great interest for its potential applications in wireless charging and energy harvesting. Here, we demonstrate that the bandwidth of broad-band RF detection in spin-torque diodes based on magnetic tunnel junctions (MTJs) can be enhanced through engineering the interface perpendicular magnetic anisotropy (PMA) between the CoFeB free layer and the MgO tunnel barrier. An ultrawide RF detection bandwidth of over 3 GHz is observed in the MTJs, and the broad-band RF detection behavior can be modulated by tuning the free layer PMA. Furthermore, a wide RF detection bandwidth (about 1.8 GHz) can be realized even without any external bias field for free layers with a thickness of about 1.65 nm. Finally, the dependence of the broad-band RF detection bandwidth on external magnetic field and RF power is discussed. Our results pave the way for RF energy harvesting for future portable nanoelectronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call