Abstract

We demonstrate through simulations and experiments that a perforated metallic film, with subwavelength perforation dimensions and spacing, deposited on a substrate with a sufficiently large dielectric constant, can develop a broad-band frequency window where the transmittance of light into the substrate becomes essentially equal to that in the film absence. We show that the location of this broad-band extraordinary optical transmission window can be engineered in a wide frequency range (from IR to UV), by varying the geometry and the material of the perforated film as well as the dielectric constant of the substrate. This effect could be useful in the development of transparent conducting electrodes for various photonic and photovoltaic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call