Abstract
- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications. BT segmentation with MRI remains challenging despite advancements in image acquisition techniques. Accurate detection and segmentation are essential for proper diagnosis and treatment planning. This study aims to enhance BT detection and segmentation accuracy and effectiveness of categorization through the implementation of an advanced stacking ensemble learning (SEL) approach. This study explores the efficiency of SEL architecture in augmenting the precision of BT segmentation. SEL, a prominent approach within the machine learning paradigm, combines the predictions of base-level models and improves the overall performance of predictions in order to reduce the errors and biases of each model. The proposed approach involves designing a stacked DenseNet201 as the meta-model called SEL-DenseNet201, complemented by six diverse base models such as mobile network version 3 (MobileNet-v3), 3-dimensional convolutional neural network (3D-CNN), visual geometry group network with 16 and 19 layers (VGG-16 and VGG-19), residual network with 50 layers (ResNet50), and Alex network (AlexNet). The strengths of the base models are calculated to capture distinct aspects of the BT MRI, aiming for enhanced segmentation performance. The proposed SEL-DenseNet201 is trained using BT MRI datasets. The augmentation techniques are applied to MRI scans to balance and enhance the model performance through the application of image enhancement and segmentation techniques. The proposed SEL-DenseNet201 achieves impressive results with an accuracy of 99.65% and a dice coefficient of 97.43%. These outcomes underscore the superiority of the proposed model over existing approaches. This study holds the potential to be an initial screening approach for early BT detection, with a high success rate.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have