Abstract

Enantiopure metal-complex catalyzed asymmetric alternating copolymerization of CO(2) and meso-epoxides is a powerful synthetic strategy for preparing optically active polycarbonates with main-chain chirality. The previous studies regarding chiral zinc catalysts provided amorphous polycarbonates with moderate enantioselectivity, and thus, developing highly stereoregular catalysts for this enantioselective polymerization is highly desirable. Herein, we report the synthesis of highly isotactic poly(cyclohexene carbonate)s from meso-cyclohexene oxide using dissymmetrical enantiopure salenCo(III) complexes in conjunction with bis(triphenylphosphine)iminium chloride (PPNCl) as catalyst. The presence of a chiral induction agent such as (S)-propylene oxide or (S)-2-methyltetrahydrofuran significantly improved the enantioselectivity regarding (S,S)-salenCo(III) catalyst systems. Up to 98:2 of RR:SS was observed in the resultant polycarbonates obtained from the catalyst system based on (S,S)-salenCo(III) complex 4d bearing an adamantyl group on the phenolate ortho position, in the presence of (S)-2-methyltetrahydrofuran. Primary ONIOM (DFT:UFF) calculations, which were performed to investigate the effect of the competitive coordination of (S)-induction agent versus cyclohexene oxide to Co(III) center on enantioselectivity, suggest that the (S)-C-O bond in cyclohexene oxide is more favorable for cleavage, due to the interaction between oxygen atom of (S)-induction agent and (S)-C-H of the coordinated cyclohexene oxide. The highly isotactic poly(cyclohexene carbonate) is a typical semicrystalline polymer, possessing a melting point of 216 °C and a decomposition temperature of 310 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.