Abstract
Objective: To improve ATN's solubility, permeability, and dissolution rate of pentaerythritol-eudragit®RS100 co-processed excipients (CE) and their potential as a solid dispersion carrier (ATN-CE-SD). Methods: The ATN-CE-SD was prepared using the solvent evaporation technique. The pure ATN, physical mixture, CE carrier, and optimized ATN-CE-SD was physicochemically characterized using Scanning electron microscopy, Fourier transforms infrared spectroscopy, differential scanning calorimetry, powder x-ray diffractometry, solubility, and in vitro dissolution was used to evaluate solid dispersions. Results: Physical and chemical analysis showed that ATN-CE-SD formed via the involvement of weak intermolecular forces of attraction between CE carrier and ATN. The prepared solid dispersion showed the drug content around ~ 96.94 % w/w, indicating that the solvent evaporation method improved the encapsulation of ATN and, thus, enhanced its drug content. Compared to pure ATN (~ 0.11 mg/ml), ATN-CE-SD (1:2) significantly increased the aqueous solubility by around ~ 25-fold (~ 2.78 mg/ml), indicating solid dispersion improves the solubility of ATN. ATN-CE-SD enhanced the rate of dissolution of ATV (~ 65 %) compared to pure ATN (~ 25 %) and PM (~ 34 %). Likewise, ATN-CE-SD (1:2) improved the rate and extent of ATN (~ 60 %) across the biological membrane compared to pure ATN (~ 22 %) and PM (~ 32 %). The ATN-CE-SD (1:2) improved the dissolution efficiency by around ~ (57.31%) compared to pure ATN (~ 7.02%) and PM (~ 20.43%). According to the study, co-processed excipients could serve as a promising solid dispersion carrier and improve ATN's water solubility, permeability, and dissolution rate. Conclusion: Based on the results, it is possible to use synthetic solid dispersion carriers as alternatives to improve the low water solubility and permeability of ATN.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have