Abstract

Nanovaccines have emerged as promising agents for cancer immunotherapy. However, insufficient antitumor immunity caused by inefficient antigen/adjuvant loading and complicated preparation processes are the major obstacles that limit their clinical application. Herein, two adjuvants, monophosphatidyl A (MPLA) and CpG ODN, with antigens were designed into a nanovaccine to overcome the above obstacles. This nanovaccine was constructed with adjuvants (without additional materials) through facile self-assembly, which not only ensured a high loading efficacy and desirable safety but also facilitated clinical translation for convenient fabrication. More importantly, the selected adjuvants could achieve a notable immune response through synergistic activation of Toll-like receptor 4 (TLR4) and TLR9 signaling pathways, and the resulting nanovaccine remarkably inhibited the tumor growth and prolonged the survival of tumor-implanted mice. This nanovaccine system provides an effective strategy to construct vaccines for cancer immunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.