Abstract

BackgroundThe antibacterial activity of 21 nm TiO2 nanoparticles (NPs) and particles modified with Garcinia zeylanica (G. zeylanica) against Methicillin resistant Staphylococcus aureus was investigated in the presence and absence of light.ResultsSurface modification of TiO2 NPs with the adsorption of G. zeylanica extract, causes to shift the absorption edge of TiO2 NPs to higher wavelength. TiO2 NPs, G. zeylanica pericarp extract showed significant bactericidal activity which was further enhanced in contact with the TiO2 modified G. zeylanica extract.ConclusionsThe antimicrobial activity was enhanced in the presence of TiO2 NPs modified with G. zeylanica and with longer contact time.

Highlights

  • The antibacterial activity of 21 nm TiO2 nanoparticles (NPs) and particles modified with Garcinia zeylanica (G. zeylanica) against Methicillin resistant Staphylococcus aureus was investigated in the presence and absence of light

  • This study aimed to determine the antibacterial activity of TiO2 NPs modified with G. zeylanica aqueous extract

  • Scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis A scanning electron microscope (SEM) image of the surface of TiO2 coated petri dish is shown in the Fig. 1

Read more

Summary

Introduction

The antibacterial activity of 21 nm TiO2 nanoparticles (NPs) and particles modified with Garcinia zeylanica (G. zeylanica) against Methicillin resistant Staphylococcus aureus was investigated in the presence and absence of light. Nanometals ranging from 1 to 100 nm in size have unique physical and chemical properties which can be exploited for various applications [1, 2]. Further these are promising novel therapeutic agents having antimicrobial and antibiofilm activity. Development of microbial resistance to antibiotics is a major challenge in the medical field. Two potential sources of novel antimicrobial agents are medicinal plants and nanomaterials [3, 4]. The antimicrobial properties of nanomaterials including metal nanoparticles can be attributed to different mechanisms such as generation of reactive oxygen species, inactivation of cellular enzymes and nucleic acids of the microbes resulting in pore

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call