Abstract

Enhanced anharmonicity is required to achieve many interesting phenomena in thermoelectricity, superconductivity, ferroelectricity, etc. Here, we propose a novel mechanism for enhancing anharmonicity by forming the low-symmetry off-center ground state, such as the s(II) phase, in two-dimensional AIB2X chalcogenides (AIB = Cu, Ag and Au; X = S, Se, and Te). In this system, the in-plane rotational phonon mode introduces a much stronger anharmonicity in the distorted s(II) phase than in the nondistorted s(I) phase. We show that the stabilities of the s(I) and s(II) phases arise from the ionicity and the ionic size; for example, the low ionicity and the small ionic size favor the s(II) phase. We further demonstrate that the anharmonicity can be tuned by controlling the strain-induced s(II)-to-s(I) phase transition, which explains the anomalous lattice thermal conductivity. Our work relates anharmonicity to symmetry-breaking structural distortion and widens the ways to design excellent thermoelectric materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call