Abstract
Anomalous large thermal conductivity has been observed numerically and experimentally in one- and two-dimensional systems. There is an open debate about the role of conservation of momentum. We introduce a model whose thermal conductivity diverges in dimensions 1 and 2 if momentum is conserved, while it remains finite in dimension d > or = 3. We consider a system of harmonic oscillators perturbed by a nonlinear stochastic dynamics conserving momentum and energy. We compute explicitly the time correlation function of the energy current C(J)(t), and we find that it behaves, for large time, like t(-d/2) in the unpinned cases, and like t(-d/2-1) when an on-site harmonic potential is present. This result clarifies the role of conservation of momentum in the anomalous thermal conductivity in low dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.