Abstract

We show that the spin Hall effect of light upon reflection of one-dimensional photonic crystal with a defect layer can be enhanced significantly with a spin-dependent transverse displacement of the beam centroid of several wavelengths of light which is much larger than those reported previously, for horizontal- and vertical-polarization incidence. Under the condition of abrupt phase changes of reflection coefficients however, the spin Hall effect of light could be completely suppressed. Further, we demonstrate that, by tuning the optical parameters of the defect layer, the spin Hall effect of light upon reflection can be switchable for any incident angle and polarization of incidence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call