Abstract
In this study, we explore the effect of the dialkoxy and dithioalkoxy side chains on the benzo [1,2-b:4,5-b′]dithiophene (BDT) unit by comparing the O-BDT homopolymer (O-PBDT), S-BDT homopolymer (S-PBDT), and S-BDT-alt-O-BDT copolymer (SO-PBDT) by computational calculations and experimental results. The polymers were prepared by Pd-catalyzed Stille coupling. Additionally, hole mobility and film morphology were studied by fabricating organic field effect transistors (OFETs) and using TappingMode AFM, respectively. The photovoltaic properties of the polymers were measured from fabricated PSC devices. The replacement of the alkoxy (−OR) groups with thioalkoxy (−SR) groups lowered the HOMO energy level of the conjugated polymers from 5.31 to 5.41 eV, and consequently enhanced Voc, while still preserving the excellent properties offered by the BDT-based polymers. Especially, high Voc of 0.99 V was achieved from S-PBDT polymer based PSC with up to 4.0% of PCE, which is one of the highest efficiencies reported from a homopolymer-based PSC without thermal/solvent annealing or incorporated additives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.