Abstract

Saline wastewater poses a threat to biological nitrogen removal. This study investigated whether and how static magnetic field (SMF) can improve the salt-tolerance of aerobic granular sludge (AGS) in two simultaneous partial nitrification and denitrification (SPND) reactors. Results confirmed that the SMF improved the mean size and settleability of granules, stimulated secretion of extracellular polymeric substances with high protein content, in turn enhancing the aerobic granulation. Although high salt stress inhibited functional microorganisms, the SMF maintained better SPND performance with average COD removal, TN removal and nitrite accumulation ratio finally recovering to 100%, 72.9% and 91.1% respectively. High throughput sequencing revealed that functional bacteria evolved from Paracoccus to halotolerant genera Xanthomarina, Thauera, Pseudofulvimonas and Azoarcus with stepwise increasing salinity. The enhanced salt-tolerance may be because the SMF promoted the activity of these halotolerant bacteria. Therefore, this study proposes an economic, effective and environmental biotechnology for saline wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call