Abstract

The simultaneous partial nitrification, anammox and denitrification (SNAD) process has been widely used in domestic sewage biological denitrification technology because of its high efficiency and low consumption. However, the simultaneous removal of another important pollution element, phosphorus, has been difficult, and its C/N ratio limitation of the influent is strict. The start-up of the anaerobic hydrolysis acidification (ANHA)- simultaneous partial nitrification, anammox and denitrification (SNAD)/enhanced biological phosphorus removal (EBPR) coupling process achieves the treatment of urban sewage for carbon, nitrogen and phosphorus removal. Under optimal conditions, the final total nitrogen and total phosphorus removal rates reached 91.59% and 89.10%, respectively. High-throughput sequencing technology showed that the ANHA reactor was mainly Lactococcus. At the same time, the main bacteria in the SNAD/EBPR process were anammox bacteria (AnAOB, Candidatus_Kuenenia, Candidatus_Brocadia) primarily existing in biofilms, while the ammonium oxidizing bacteria (AOB, Nitrosomonas), denitrifying polyphosphate-accumulating organisms (DPAOs, Pseudomonas, Flavobacterium, Bdellovibrio) and Denitrifying bacteria (DNB, Thauera, Denitratisoma, Rhodobacteraceae).were mainly found in the suspended sludge. These conclusions provide valuable information for the full-scale treatment of domestic sewage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call