Abstract

Organic ZnCr-LDH (ST-LDH) was synthesized by a facile one-step hydrothermal technique using methyl orange (MO) as a soft template agent, which can efficiently remove methyl orange (MO), Congo red (CR), and orange II (OII) from aqueous solution. The microstructure of ST-LDH by modifying changed obviously, from the cellular structure to the stacking structure formed by the face-face contact of hydrotalcite nanosheets, which resulted in much more exchangeable nitrate ions to remain in the interlayer space. The pre-insertion of benzene sulfonate as a pillar expanded the interlayer gallery, which facilitated the pollutant anions (MO, CR, and OII) into the interlayer of LDH in the subsequent adsorption process. The maximum adsorption capacity of ST-LDH for MO, CR, and OII was 4200.8 mg/g, 1252.0 mg/g, and 1670.6 mg/g, respectively, which is approximately 1.86 times, 1.8 times, and 2.32 times that of the pristine NO3-LDH, respectively. The removal mechanism of anionic dyes was determined as anion exchange between NO3- anions and dye molecules. The adsorption behavior for MO and OII is multilayer adsorption, while the adsorption behavior for CR is monolayer adsorption. The adsorption process mainly was controlled by the chemical bonding between the dye molecules and adsorbent active sites. The LDH can be effectively regenerated by photocatalysis after MO adsorption. The ST-LDH has a great potential to be used as a high-efficient adsorbent to remove anionic dyes from aqueous solution. The schematic illustration of the synthetic process of soft template agent modified and unmodified hydrotalcites by one-pot hydrothermal method and the adsorption process of MO by ST-LDH were shown in Fig. 12. Modified hydrotalcite (ST-LDH) was prepared using methyl orange (MO) as a soft template agent. Compared with unmodified hydrotalcite (NO3-LDH), the insertion of benzene sulfonate anions into the hydrotalcite layer resulted in the increase of the interlayer spacing from 8.269 to 8.654Å. The LDH host structure pre-intercalated by benzene sulfonate anions evolved into pillared materials in interlayer; benzene sulfonate anions as a column expanded the interlayer spacing of (003) base plane, which facilitated the pollutant anions (MO, CR, and OII) into the interlayer of ST-LDH and exchanged with NO3- anion in the subsequent adsorption process. It can be inferred that in the process of modification hydrotalcite by benzene sulfonate, a small amount of benzene sulfonate anions pre-inserted into the gallery of hydrotalcite with a monolayer model in the process of hydrotalcite modification, and its inclination angle is calculated to be about 29.1°. After ST-LDH sample adsorbed the MO molecules, dye molecules intercalated into the LDH host, and successful exchange with NO3- anions, the d003 value increased to 24.78 Å. A large amount of MO- anions were intercalated into the gallery of ST-LDH with a bilayer model according to the Freundlich isotherm model, and the tilting angle increases to 53.6°. The adsorption capacity of MO by ST-LDH was significantly enhanced to 4200.8 mg/g, which was much higher than that of NO3-LDH (2252.8 mg/g). Schematic illustration of the synthetic process of LDH materials and adsorption process of MO by ST-LDH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call