Abstract
The cornea serves as an important barrier structure to the eyeball and is vulnerable to injuries, which may lead to scarring and blindness if not treated promptly. To explore an effective treatment that could achieve multi-dimensional repair of the injured cornea, the study herein innovatively combined modified mRNA (modRNA) technologies with adipose-derived mesenchymal stem cells (ADSCs) therapy, and applied IGF-1 modRNA (modIGF1)-engineered ADSCs (ADSCmodIGF1) to alkali-burned corneas in mice. The therapeutic results showed that ADSCmodIGF1 treatment could achieve the most extensive recovery of corneal morphology and function when compared not only with simple ADSCs but also IGF-1 protein eyedrops, which was reflected by the healing of corneal epithelium and limbus, the inhibition of corneal stromal fibrosis, angiogenesis and lymphangiogenesis, and also the repair of corneal nerves. Invitro experiments further proved that ADSCmodIGF1 could more significantly promote the activity of trigeminal ganglion cells and maintain the stemness of limbal stem cells than simple ADSCs, which were also essential for reconstructing corneal homeostasis. Through a combinatorial treatment regimen of cell-based therapy with mRNA technology, this study highlighted comprehensive repair in the damaged cornea and showed the outstanding application prospect in the treatment of corneal injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Molecular therapy : the journal of the American Society of Gene Therapy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.