Abstract
Phosphogypsum (PG) is a major industrial by-product of wet process phosphoric acid production, and untreated PG stockpiled on land will cause severe environmental pollution. Thermal treatment of PG is currently the mainstream treatment method PG can be thermally decomposed to produce CaO, and the decomposition process produces large amounts of SO2. In this paper, phosphate slurry was used to absorb SO2 generated during the PG decomposition to produce phosphoric acid. The effects of operating conditions such as pressure, inlet SO2 concentration, and additive content on the desulfurization efficiency, as well as phosphoric acid yield, were investigated. Under the optimal experimental parameters, the desulfurization efficiency was 100% in the first 3 h, and decreased to 67.42% after 5 h, the maximum phosphate concentration in the solution was 1445.92 mg/L. The Density functional theory (DFT) calculations showed that SO2 and O2 adsorbed on the surface of P2O5 underwent to generate SO3, which can react with H2O to produce H2SO4. Moreover, it was found that Fe3+ could enhance the catalytic oxidation process of SO2 and O2 by decreasing the reaction energy barrier. This study should be helpful for the recycling of phosphorus resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.