Abstract
Phosphogypsum (PG) is an industrial hazardous waste product discharged during wet-process phosphoric acid production. Once crystallized, the byproduct PG is filtered and separated from the liquid-phase product and sluiced to the disposal area near the production site for storage, seriously threatening the harmonious symbiosis between humans and nature. Therefore, devising effective solid waste management and cleaner production programs to contain and eliminate PG is of interest to researchers. In this study, the utilization status of PG is comprehensively reviewed, and a feasibility pathway for resourceful recovery of PG is proposed. The key challenges and countermeasures for the high-temperature calcination and decomposition of PG are analyzed and discussed. The visualization analysis based on bibliometrics reveals that the maximum recovery of abundant calcium (as CaO) and sulfur (as SO2) in PG and their utilization for the copreparation of calcium-based materials and sulfuric acid are the most suitable solutions for the large-scale application of PG. Five challenges that restrict the commercial promotion of PG calcination and decomposition processes are perfecting the calcium-sulfur conversion mechanism, establishing a process strengthening strategy, developing value-added technology routes, mastering unit scale-up regularity, and conducting sustainable performance assessment. Industrial applications are expected within 10-15 years.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have