Abstract

Ho3+/Yb3+ codoped TeO2–WO3–ZnO–ZnX2(X=F, Cl) glasses were prepared by melt-quenching method. The absorption spectra, transmittance spectra, X-ray diffraction (XRD) curves, Raman spectra and mid-infrared fluorescence spectra were measured, along with the Judd–Ofelt intensity parameters, stimulated emission and absorption cross-sections were calculated to evaluate the effects of halide amount of the spectroscopic properties. It is shown that the introduction of an appropriate amount of halide can further improve the mid-infrared fluorescence intensity through an enhanced phonon-assisted energy transfer between Ho3+/Yb3+ ions and the energy transfer mechanisms are investigated quantitatively in detail by calculating energy transfer microparameters and phonon contribution ratios. The results indicate that this kind of glasses is a promising material for mid-infrared optical fiber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.