Abstract

Improving crop productivity under drought conditions contributes largely to the sustainable agriculture globally. In this study, the agronomic traits and physiological processes related to osmolyte accumulation and reactive oxygen species (ROS) homeostasis during late growth stage in wheat under drought stress were studied. Three cultivars viz., Shimai 22 (drought tolerant), Zhongxinmai 99 (median drought-tolerant, control), and Shi 4185 (drought sensitive) sharing contrasting drought tolerance were grown under normal irrigation (NI: with irrigations prior to sowing, and at jointing and flowering stages) and deficit irrigation (DI, with irrigations prior to sowing and at jointing) conditions. Data regarding yields, osmolyte (i.e., proline and soluble sugar) contents, and antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), and malondialdehyde (MDA) contents were recorded. Under deficit irrigation, the cultivars displayed modified agronomic and physiological traits. Among cultivars, Shimai 22 showed best agronomic traits (6.47 to 7.23% higher yield than control), osmolyte contents and AE activities (10.12 to 22.18% higher than control), and least MDA accumulation (12.30 to 17.06% lower than control). In contrast, Shi 4185 cultivar performed worst regarding above said traits. The transcripts of the genes in ��1-Pyrroline-5-carboxylate synthetase (P5CS) family that regulates proline biosynthesis and those in AE families that modulate ROS homeostasis were evaluated. Results revealed that the P5CS genes TaP5CS2 and TaP5CS5 and the AE ones TaSOD3, TaCAT2 and TaCAT5 were modified on transcripts across the cultivars under DI condition, showing to be significant upregulated compared with NI. These results suggested the essential roles of osmolyte accumulation and AE proteins in improving the drought tolerance of wheat during late growth stages. In addition, this study suggested that the elevated transcription efficiencies of distinct P5CS and AE family genes under water deprivation contribute to the enhanced drought tolerance in drought-tolerant cultivars. © 2021 Friends Science Publishers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.