Abstract

The study deals with photophoresis of a spherical micro-particle suspended in absorbing gaseous media. Photophoretic motion of the particle stems from the asymmetric distribution of absorbed energy within the particle. By evaluating the so-called heat source function at various conditions, the study focuses on the effects of governing parameters on the energy distribution within the particle and their potential influences to the photophoresis. The results reveal that the increase in either particle size or absorptivity enhances the energy intensity on the illuminated (leading) side and tends to generate positive photophoresis. For a particle of low absorptivity, the energy distribution is dominated by particle refraction. Enhancing particle refractivity, the energy tends to be focused onto a certain spot area on the shaded (trailing) side and leads to a tendency of negative photophoresis. Increasing medium absorptivity significantly degrades the level of energy absorbed by the particle and in turn weakens the driving force of the particle photophoresis. Defence Science Journal, 2010, 60(3), pp.233-237 , DOI:http://dx.doi.org/10.14429/dsj.60.347

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.