Abstract
In this article we apply the first integral method to construct the exact solutions of some nonlinear fractional partial differential equations (PDES) in the sense of modified Riemann–Liouville derivatives, namely the nonlinear fractional Zoomeron equation and the nonlinear fractional Klein- Gordon- Zakharov system of equations. Based on a nonlinear fractional complex transformation, these two nonlinear fractional equations can be turned into nonlinear ordinary differential equations (ODE) of integer order. This method has more advantages: it is direct and concise. Key words: First integral method, exact solutions, nonlinear fractional Zoomeron equation, nonlinear fractional Klein-Gordon-Zakharov system of equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.