Abstract

Most building materials can be characterized as quasi-brittle composites with a cementitious matrix, reinforced by some stiffening particles or elements. Their massive exploitation motivates the development of numerical modelling and simulation of behaviour of such material class under mechanical, thermal, etc. loads, including the evaluation of the risk of initiation and development of micro- and macro-fracture. This paper demonstrates the possibility of certain deterministic prediction, applying the dynamical approach using the Kelvin viscoelastic model and cohesive interface properties. The existence and convergence results rely on the semilinear computational scheme coming from the method of discretization in time, using several types of Rothe sequences, coupled with the extended finite element method (XFEM) for practical calculations. Numerical examples refer to cementitious samples reinforced by short steel fibres, with increasing number of applications as constructive parts in civil engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.